Nabha Power Limited

23rd National Award for 2022

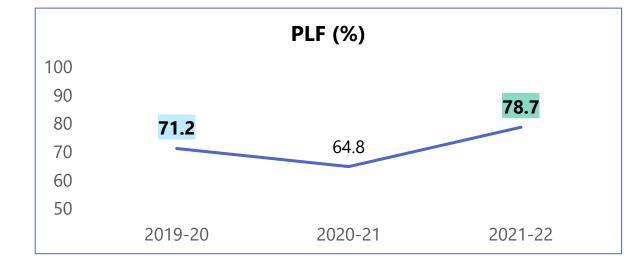
Excellence in Energy Management 23 – 26 August 2022

> 2*700 MW Supercritical Thermal Power Plant Rajpura, Punjab

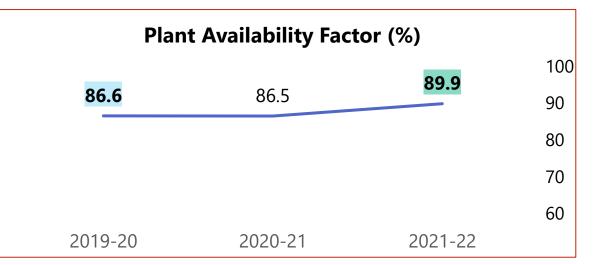
Team: Anand Saxena – Sr. DGM Alfurqan Jahagirdar - Manager Mukul Kabra – Assistant Manager

Company Profile

- > Lowest cost of generation among the thermal power plants in the State of Punjab
- Constitutes ~25% of the total installed thermal generation capacity, it has contributed ~40% to the thermal energy generated within Punjab
- NPL is certified for ISO 50001:2018 (Energy Management System), ISO 9001:2015 (QMS), ISO 14001:2015 (EMS), ISO 45001:2018 (OHSAS), ISO 17025:2017 (NABL accreditation for Coal lab)


Station Performance FY 22 2

S No.	Description	Units	Values
1	Annual Generation	MUs	9654
2	PLF	%	78.72
3	Availability	%	89.87
4	Gross Heat Rate	Kcal/kWh	2192
5	Auxiliary Power	%	4.82
6	Boiler Efficiency	%	88.15
7	Turbine Heat Rate	Kcal/kWh	1932
8	DM Water Make-up	%	0.39
9	Sp. Raw Water Cons.	Cum/MWh	1.85
10	Sp. Oil Consumption	ml/kWh	0.124




Performance Data Y-O-Y

2

* Reason for increased in Heat Rate : ROM coal Firing & COH deferment due to high energy demand in state of Punjab, post covid economic revival.

Energy Benchmarking

Internal Benchmarking

Energy Pls	Target Value FY-23 (@ 73% PLF)
Gross Heat Rate (Kcal/kWh)	2171
Aux Power Consumption(%)	4.7
DM Makeup (%)	0.38

Our Short Term Plan

To close the Financial year by achieving the Internal target value through:

- Efficient & Reliable Operation
- Efficient Energy Monitoring
- Implementation of ENCON Projects in Pipeline
- Exploring New Opportunities and Using Latest Technologies

Our Long Term Plan

To continually improve the station performance by adopting best O&M practices, efficient Operation and by use of energy efficient products and services

Nationa	Externa	l Benchmarking	International		
	Competitor-1	Competitor-2	Competitor-3		Jhon Turk Jr,
	JP Nigrie	Reliance Sasan	TSPL, Vedanta		Arkansas, USA
	5.09 %	5.98 %	7.17 %		-
	2182 kcal/kWh	2250 kcal/kWh	2262 kcal/kWh		2048 kcal/kWh

ROADMAP - FY23

"Steps to Sustainability"

- Flue gas Desulphurization system installation
- 100 % Ash Utilization
- Boiler RAPH basket replacement with better design
- RCM Implementation
- Equipment health & condition
 monitoring through ERP system
- Long Term Overhaul Plan

"Projects in Implementation Phase"

- CW pump internal coating 2
 LU annual Saving
- SCAPH Modification from Fixed design to Rotary design – 2.7 LU annual Savings
- Replacement of Existing Conventional lights of different rating LED lights – 4.5 LU annual Savings
- Replacing TDBFP Recirculation valves internals with better design valve – **1.5 kcal/kWh**

"Projects in feasibility Stage"

- Modification of Mill Seal Air Fan IGV manual operation to auto operation
- Optimisation of compressed air network pressure set point
- Optimization of Main steam & HRH steam temperature at part load
- Flue Gas Exit temperature optimization

ENCON Project FY 2022

5

S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
1	11 Nos. of high energy drain valves replaced with better design valves in Unit-1.	0	41,928	57.3	6.20	1.3
2	Servicing of HP/IP/LP turbine, boiler chemical cleaning & 16 Nos. of high energy drain valves replaced with better design valves in Unit-2.	0	46,733	63.4	30.1	5.7
3	Replacement of Existing Conventional lights with LED	3,55,614	0	1.1	1.91	20.7
4	CWP-2A pump internal coating	2,29,000	0	0.7	0.85	14.6
5	CWP-2B pump impeller replacement & internal coating	7,73,665	0	2.4	0.85	4.2

ENCON Project FY 2022

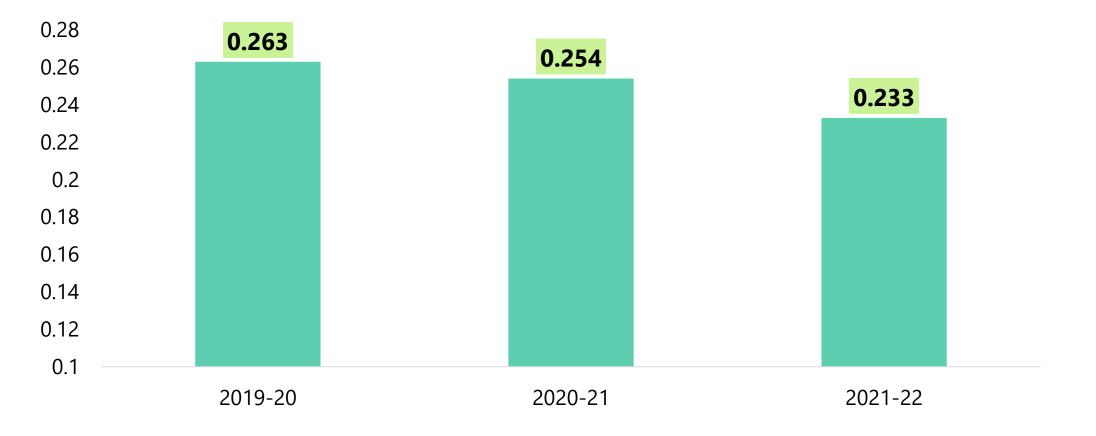
S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
6	Stoppage of Eco hopper deashing pump	2,95,099	0	0.9	0.04	0.5
7	Stoppage of 01 No. of BALP pump*	1,14,646	0	0.4	0.00	NA
8	SCAPH modification	2,67,960	0	0.8	0.10	1.4
9	Impeller trimming of RO feed to DMF pump*	1,35,000	0	0.4	0.01	0.3
10	Impeller trimming of RO LP pump*	97,000	0	0.3	0.01	0.4
	Total	22,67,954	88,661	127.8	40.2	3.8

5

* Projects implemented through KAIZEN

ENCON Project FY20 to FY22 6

Year	No. of Energy Saving Projects	Investments (INR Million)	Electrical Saving (Million kWh)	Thermal Saving (Million Kcal)	Saving (INR Million)
FY 2019-20	10	7.2	7.47	43,786	87.5
FY 2020-21	08	62.0	1.74	74,441	104.0
FY 2021-22	10	40.2	2.27	88,661	127.8



Renewable Energy (Solar) 7

Installed Capacity: 205 kW

Generation (Million kWh)

Environment Management 8 ASH MANAGEMENT					
	UOM	2019-20	2020-21	2021-22	
Ash Stock in Plant (Yard + Pond)	LMT	0.22	0.15	0.13	
Ash Generated	LMT	12.85	14.20	19.55	
Ash Utilization	%	140	100	100	
Ash Utilization in manufacturing	%	135	95	79	
Ash Utilization in FA bricks	%	5	5	5	
Ash Utilization for Roads Pavements	%	0	0	16	

FY 2021-22 Ash Handled (Wet Mode) : 15.15 %

Ash Handled (Dry Mode) : 84.85 %

Environment Management

BEST PRACTICES IN ASH UTILIZATION

Installation of Fly ash bag packing machine to cater the need of buyer with limited requirement

Ensured complete automation of fly ash disposal operations

Facilitation of bulk transportation of Fly Ash through closed Bulkers and ensured loading of Fly ash in environment friendly manner

Maintained Zero fugitive emission during disposal of fly ash

Records of Ash disposal and buyer performance maintained through ERP

Environment Management

STATUS OF FGD

Wet limestone type FGD erection and equipment installation work in progress.

8

Super structure work of all buildings is in progress.

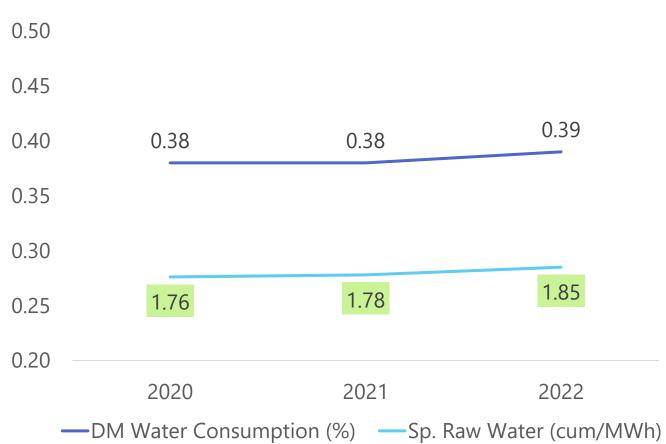
Both chimneys RCC shell has been completed, flue can erection is in progress.

Supply of all major equipment completed.

Overall project completion achieved ~75%

Emission Parameter

FY	Generation (MU)	CO2 emission kg/kWh	SOx (mg/Nm3)	NOx (mg/Nm3)	Particulate Matter (mg/Nm3)
2019-20	8757	0.84	1507	323	41
2020-21	7951	0.84	1442	300	41
2021-22	9654	0.86	1435	280	42



Environment Management⁸

WATER CONSUMPTION

Zero Liquid Discharge plant

4	Best Practices
3.5	 Enhanced ETP recovery from 70% to 78% by recycling Ultra filtration (UF) & RO Wastewater – Water Savings of 533 m3/Day
3	 Conducted Water Audit to identify the new
2.5	areas for improving water efficiency
2	 Reusing of PT Plant Clarifier sludge water – Water Savings of 150 m3/Day
1.5	• DM Plant OBR improvement- from designed
 1	18 Hrs to 20 Hrs by installation of Online concentration analyzers & improving supervision & thus reduced regeneration
	&Backwash wastewater – Water savings 100

m3/Day

Best Practices

RELIABILITY CENTRED MAINTENANCE (RCM) IMPLEMENTATION

DEVELOPMENT OF SINGLE WINDOW MONITORING TOOL IN DCS FOR PLANT AUTO STATUS/SAFE SHUTDOWN STATUS/MOV STATUS

DEVELOPMENT OF INTEGRATED DASHBOARD FOR BUDGET MONITORING

MAXIMO ERP APPLICATION- LOGIC FORCING, CLASSIFICATION OF PTW & REPORTING of HSE ACTIVITIES

DEVELOPMENT OF INHOUSE SMART SOOTBLOWING SYSTEM

DAILY BOILER METAL TEMPERATURE ONLINE MONITORING AND AUTOMATIC REPORT GENERATION

ULTRASONIC TECHNOLOGY FOR AIR LEAK DETECTION, ELECTRICAL INSPECTION, VALVE INSPECTION, AND BEARING CONDITION MONITORING

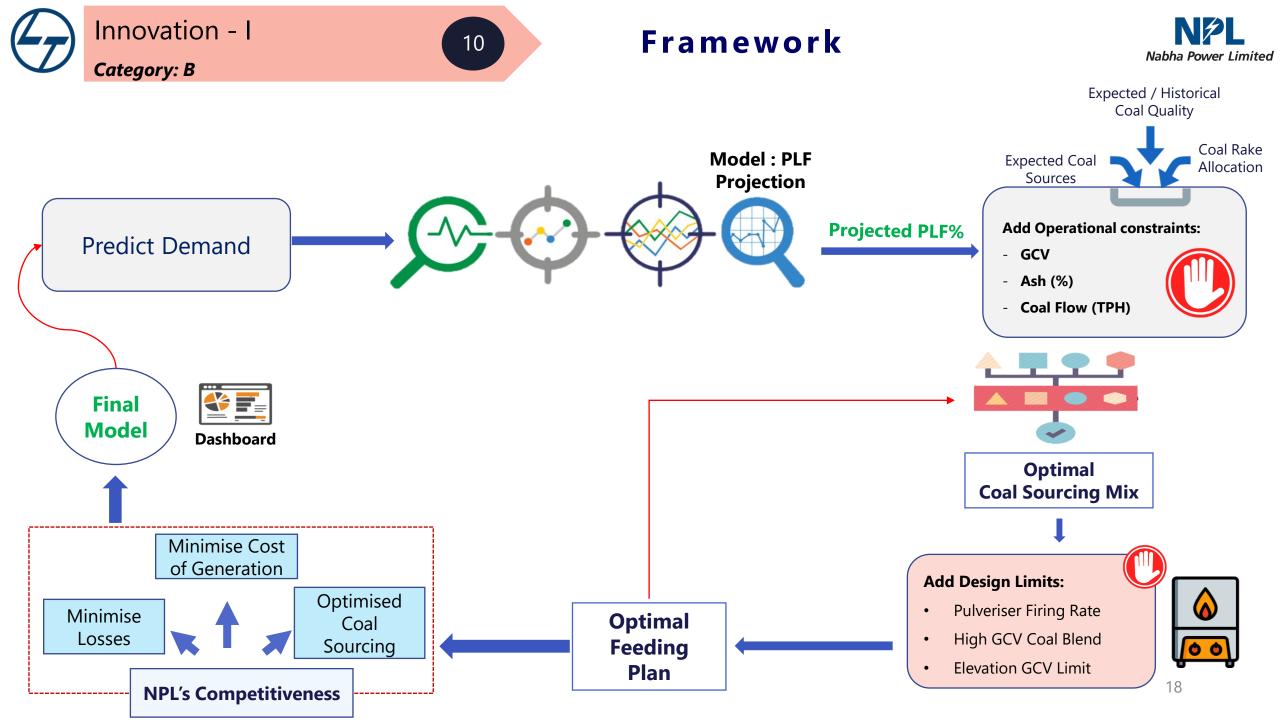
Coal Planning to Firing Model

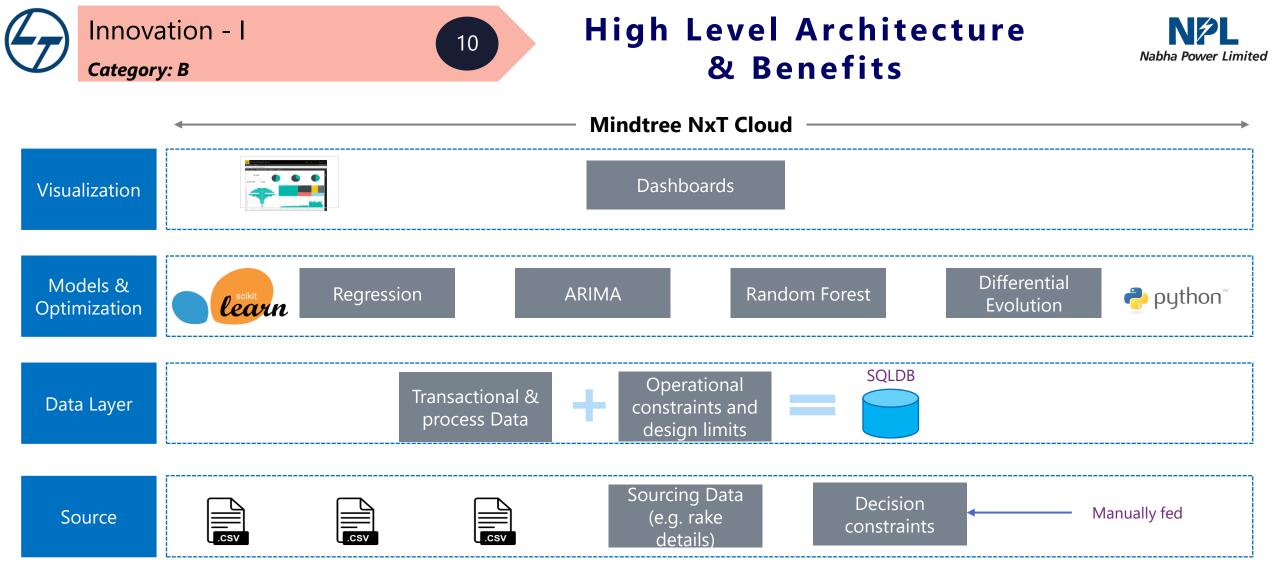
10

Coal from Multiple Coal Mines

• Varied Quality and Pricing

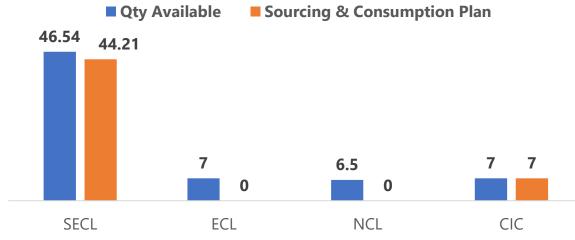
Transportation over ~1500 Km


• Freight Rate varies with distance

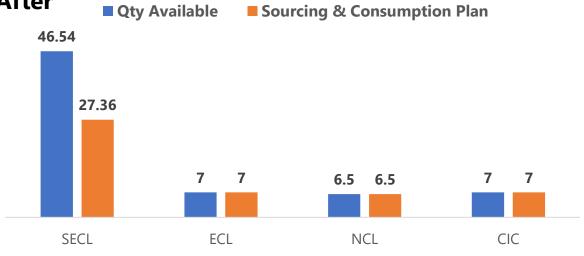

Unloading & Storage at Coal Yard

- Unloaded using wagon tipplers
- Stacked in heaps (GCV basis)

• Annual Business Turnover ~4000 Cr (Avg.)


Program Outcome:

- ✓ Annual Saving of <u>INR 5.0 Cr</u>
- ✓ Reduced planning horizon, better quality and lower losses
- ✓ Visibility of complete value chain and End to End optimization
- ✓ Integration with current IT/OT infrastructure

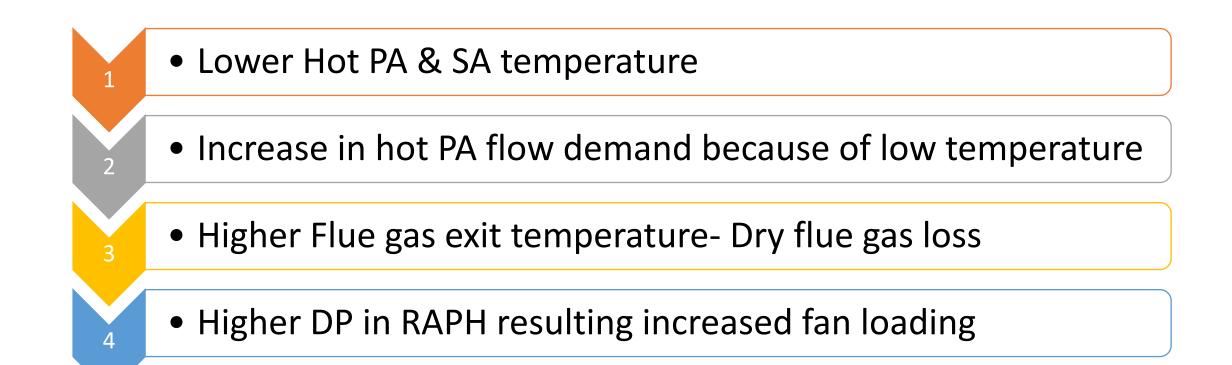


10

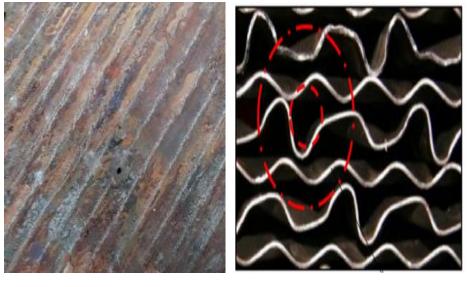
Before

After

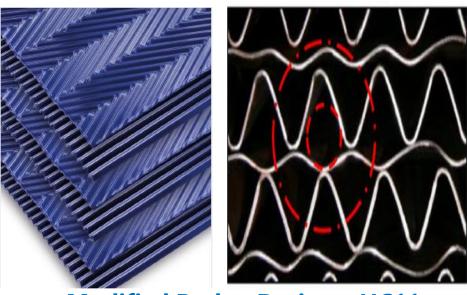
Illustration


An Illustration

REQUIREMENT OF MODIFICATION



RAPH Basket Modification


ADVANTAGES OF HC11 OVER HS8

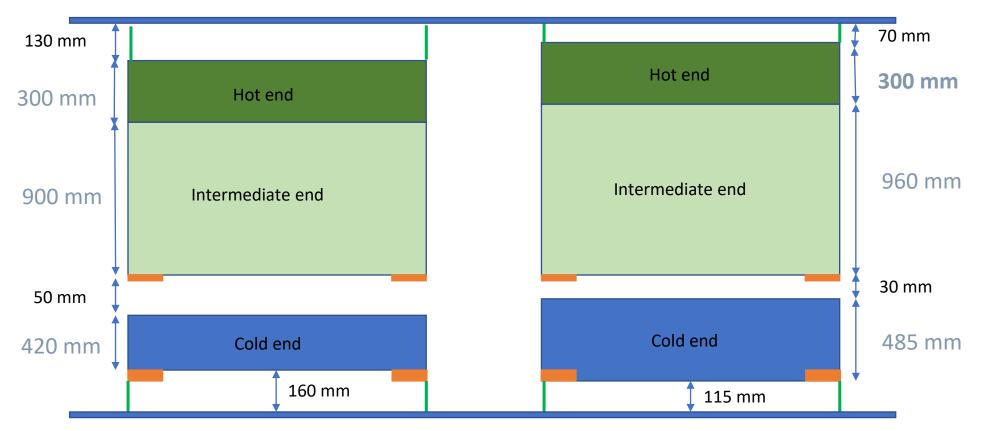
10

Old Basket Design – HS8

- Combination of notch-undulated with an undulated sheet.
- Higher DP due to Undulations running in one direction creates cold corner problems and skew flow within each container.

Modified Basket Design – HC11

- □ Transverse herringbone pattern of undulated sheet paired with a corrugated sheet.
- More cleanability due to narrow channels in the direction of flow. Lower DP
- Increase in efficiency due to increased heat transfer area



ARRANGEMENT OF MODIFIED BASKET

Old-1620

10

Modified-1745

Weight of basket- 458 MT/RAPH Heating Surface area- 56344 SqM Weight of basket- 482 MT/RAPH Heating Surface area- 58314 SqM

RAPH Basket Modification

10

RAPH Performance	With Old	With Modified	Improvement
	Basket	Basket	(Unit Heat Rate)
Dry Flue Gas Loss (Normalized to design)	4.46 %	3.90 %	0.56 % (14.6 kcal/kWh)

Teamwork, Employee Involvement & Monitoring

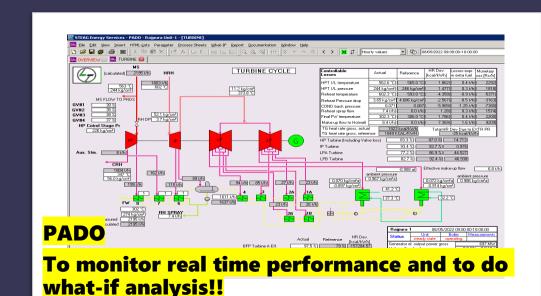
Energy Management Review:

Chaired by Head O&M fortnightly Chaired by CEO monthly

Budget for Energy Conservation FY23 = INR 1.29 Crore

Energy Efficiency Awareness Training Program Conducted:

- 1. ISO 50001 Energy Management System by CII
- 2. Energy Efficient Design & Energy Audit & Review Process as per ISO 50002 by CII
- 3. Certified Professional in Energy Efficiency by CII

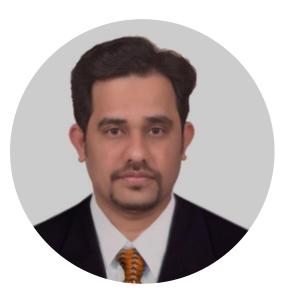

Organized 2-day virtual O&M conference on "Best Practices in O&M of Coal based TPPs"

EnMS Monitoring

For new project development & monitor real time energy consumption of equipment/system!!

Awards & Recognitions

- "Best Operating Thermal Power Generator Commissioned after 2008" by IPPAI
 2022
- "Independent Power Producer of the Year- India: by Asian Power Awards 2020
- > Twin awards from CII
 - National Energy Leader for its progressive performance for second consecutive year in Energy Management (3rd time in a row)
 - Excellent Energy Efficiency Unit award for outstanding achievements in Energy Efficiency (5th time in a row)
- > Won Golden Peacock Award for CSR in power generation category- May 2021
- Nabha Power registers its name in the top 10 thermal power plants of the Country for Highest PLF in the period of April 2021 – August 2021



Thank You

Alfurqan Jahagirdar Manager +91-8427269203

Anand Saxena Sr. DGM Team Leader +91-8146019893

Mukul Kabra Assistant Manager +91-9981515400